A common framework for restriction semigroups and regular ∗ -semigroups
نویسندگان
چکیده
منابع مشابه
A Common Framework for Restriction Semigroups and Regular *-Semigroups
Left restriction semigroups have appeared at the convergence of several flows of research, including the theories of abstract semigroups, of partial mappings, of closure operations and even in logic. For instance, they model unary semigroups of partial mappings on a set, where the unary operation takes a map to the identity map on its domain. This perspective leads naturally to dual and two-sid...
متن کاملRegular ordered semigroups and intra-regular ordered semigroups in terms of fuzzy subsets
Let $S$ be an ordered semigroup. A fuzzy subset of $S$ is anarbitrary mapping from $S$ into $[0,1]$, where $[0,1]$ is theusual interval of real numbers. In this paper, the concept of fuzzygeneralized bi-ideals of an ordered semigroup $S$ is introduced.Regular ordered semigroups are characterized by means of fuzzy leftideals, fuzzy right ideals and fuzzy (generalized) bi-ideals.Finally, two m...
متن کاملRestriction and Ehresmann Semigroups
Inverse semigroups form a variety of unary semigroups, that is, semigroups equipped with an additional unary operation, in this case a 7→ a−1. The theory of inverse semigroups is perhaps the best developed within semigroup theory, and relies on two factors: an inverse semigroup S is regular, and has semilattice of idempotents. Three major approaches to the structure of inverse semigroups have e...
متن کاملA graphical difference between the inverse and regular semigroups
In this paper we investigate the Green graphs for the regular and inverse semigroups by considering the Green classes of them. And by using the properties of these semigroups, we prove that all of the five Green graphs for the inverse semigroups are isomorphic complete graphs, while this doesn't hold for the regular semigroups. In other words, we prove that in a regular se...
متن کاملEnlargements of Regular Semigroups
Quasi-ideals were introduced by Otto Steinfeld [43] as those non-empty subsets Q of a semigroup T satisfying QTD TQ c Q. When T is regular they are precisely the subsets Q of T which satisfy QTQ = Q ([43, Theorem 9.3]). There are many examples of quasi-ideals in regular semigroup theory. We list below some of the most important: • Every subsemigroup of the form eSe (where e is an idempotent) is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 2012
ISSN: 0022-4049
DOI: 10.1016/j.jpaa.2011.07.014